

EFFECT OF NAM ON NASAL SYMMETRY AND PROPORTIONS IN PATIENTS WITH UCLP: A SYSTEMATIC REVIEW

Felicia Puspita Sari¹, Gede Wara Samsarga¹, Kenny Satrio¹, Theodorus Kevin Putra Johansyah¹, Jeremy Jonathan¹, & Made Dwi Andhika Yogiswara¹

Introduction

Nasal reconstruction presents a challenge in case of patients with unilateral cleft lip and palate (UCLP). Correction of the nasal deformity to achieve a symmetrical nose from the deficient columella and malformed nasal cartilage in cleft patients presents a great challenge. Nasoalveolar molding (NAM) was developed as a neoadjuvant therapy for patients with cleft lip and palate to improve nasal deformity before surgical intervention. The aim of this systematic review was to understand more about the effect of NAM on nasal symmetry and proportions in patients with UCLP.

Method

We searched for manuscripts involving patients with UCLP who received NAM prior to cleft lip repair. Electronic literature searching of the PubMed, Scopus, Cochrane and Google scholar databases was conducted for the studies that had been published up to December 2021.

Result

Presurgical NAM demonstrated benefits in nasolabial form when compared with patients who did not receive any presurgical infant orthopaedic appliances (PSIO). The use of presurgical NAM helps to achieve favourable reshaping of the nose and decrease the severity of the initial cleft deformity, resulting in improvement on nasolabial form. These changes lead to improved nasal symmetry and proportions in UCLP patients.

Conclusion

The preponderance of evidence in this review suggests that presurgical NAM is a beneficial adjuvant therapy for nasal deformity correction and helps achieve nasal symmetry in patients with UCLP. However, there is insufficient evidence to conclude whether presurgical NAM produces these benefits at the time of nasal maturity.

Keywords

Nasoalveolar molding, NAM, Unilateral cleft lip and palate, Nasal symmetry

Conflict of Interest Statement:
The author(s) listed in this manuscript declare the absence of any conflict of interest on the subject matter or materials discussed.
INTRODUCTION

Cleft lip and palate is one of the most common congenital deformities and predisposes to distortion of facial anatomical structures. According to the statistics data, the prevalence of oral cleft is 1-2 in 1000 live births worldwide. Based on the anatomical distribution of CLP cases in terms of the affected side, data were obtained that 13% of CLP cases were bilateral, compared with 87% unilateral, with a right-to-left ratio of 1:3.1,2 Nasal reconstruction associated with a complete unilateral cleft lip and palate (UCLP) presents challenges to the surgeons. One of the challenges is the correction of the nasal deformity to achieve a symmetrical nose from the deficient columella and malformed nasal cartilage in cleft patients.3

The use of nasoalveolar molding (NAM) in infants with cleft lip and palate first introduced by Grayson et al.4 NAM is a form of presurgical infant orthopaedic appliances (PSIO) which consists of a palatal molding plate, surgical tape, and nasal stents. NAM was developed as a neoadjuvant therapy and has been used to minimize the deformity in early infancy for patients with cleft lip and palate. NAM works by repositioning deformed alveolar segments and lower lateral cartilages through active molding prior to primary cheiloplasty. The main goals of NAM therapy are to improve nasal shape and symmetry, restore the anatomic position of the alveolus, and decrease the width of the cleft.4,5,6

The use of NAM has increased over the past two decades.6 Several studies have reported improvements in nasolabial form prior to primary surgical repair. The aim of this study was to investigate the effects of NAM on nasal symmetry and proportions in patients with UCLP.

METHOD

This study is a systematic review with comprehensive search strategies on the articles addressing the effect of nasoalveolar molding on nasal symmetry and proportions in patients with UCLP. This systematic review was performed in accordance to the Cochrane Handbook for Systematic Reviews of Interventions and to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We created the search keyword by medical subject heading and terms relating to the target condition as follows: “nasoalveolar molding”, “unilateral”, “cleft lip”, “cleft palate”, and “nasal symmetry”. We searched on PubMed, Scopus, Cochrane Library, and Google scholar for the published articles up to December 2021.

Full-text English manuscripts were eligible for inclusion in this review if they were randomized controlled trials, prospective or retrospective cohort studies, case-control studies, or cross-sectional studies. We exclude non-English papers, reviews, case reports, editorials, and studies not suitable for this systematic review. The selected papers were screened based on the eligibility criteria after a complete reading of their titles and abstracts. After that, we screened for the full text papers. The selection process of the papers is shown in the flow chart study selection (Figure 1).

The presents systematic review has been conducted in accordance with the principles outlined in the Helsinki Declaration, and all studies included in the review were conducted in accordance with these principles.

RESULTS

The search process identified 834 articles. After a detailed assessment of the full texts of the articles, 18 were selected for the final analysis (Figure 1). The resulting 18 studies consist of 1 randomized trial and 17 nonrandomized studies: 9 retrospective cohort studies, 4 prospective cohort studies, 1 prospective clinical trial study, 2 cross-sectional studies, 1 retrospective case-control study. In total, these studies involved 359 patients treated with NAM, 16 patients treated with non-NAM passive PSIO, 112 patients managed without presurgical appliances, and 10 non-cleft patients (Table 1).

Assessment Medium

Records are essential for patients to evaluate the progress and outcomes of treatment. Traditionally, photography is the most common facial recording method. Another frequently used
method is plaster model production such as nasal and maxillary casts. This method can be used to reflect the contour of nose and lips three dimensionally. Furthermore, deeper anatomical landmarks and gently curving slopes such as nostrils and alar points are not easy to measure. To overcome these disadvantages, the plaster models can be digitalized using 3D model scanner systems or imaging systems such as stereophotogrammetry were developed.7,8 From 18 studies included in this review, 9 studies used photographs method, 4 studies used casts methods, 2 studies used 3-D images, and 3 studies used a combination of photographs and casts methods.

\textit{Nasal parameters}

Two-dimension photography is the traditional method to assess nasal symmetry by the “quantity of asymmetry”. The quantity of asymmetry (in millimetres) was the linear difference of each measurement between the cleft and non-cleft sides. These parameters can have positive and negative values. A positive value indicates that the cleft side is longer or wider than the non-cleft side, and a negative value indicates otherwise. Nasal asymmetry can be observed by measuring the vertical aspects such as nostril height, nasal dome height, and columella length; horizontal aspects such as nasal base width and nostril width (Figure 2).9,10,11 Following the advancement of the assessment medium, there are more parameters to evaluate nasal asymmetry to further improve the accuracy.7,12,13

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure2.jpg}
\caption{Vertical and Horizontal measurement. a, nostril height; b, nasal dome height; c, columella length; d, nostril width; e, nasal basal width.}
\end{figure}
Table 1. Characteristics of Included Studies

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Country</th>
<th>Study Design</th>
<th>Comparison Group</th>
<th>NA M (n)</th>
<th>Comparison (n)</th>
<th>Assessment Medium</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolff K.-D., et al. (2020)</td>
<td>Germany</td>
<td>Retrospective cohort</td>
<td>no PSIO</td>
<td>8</td>
<td>8</td>
<td>Photographs</td>
<td>pre-NAM, post-NAM</td>
</tr>
<tr>
<td>Thakur S., et al. (2018)</td>
<td>India</td>
<td>Retrospective cohort</td>
<td>-</td>
<td>22</td>
<td>-</td>
<td>Photographs</td>
<td>Initial visit, after cheiloplasty</td>
</tr>
<tr>
<td>Kinouchi N., et al. (2018)</td>
<td>Japan</td>
<td>Retrospective cohort</td>
<td>non-NAM</td>
<td>13</td>
<td>16</td>
<td>Photographs</td>
<td>Initial visit, immediately before surgery, after cheiloplasty</td>
</tr>
<tr>
<td>Ezzat C.F., et al. (2007)</td>
<td>United States</td>
<td>Prospective cohort</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>Intraoral casts, extraoral casts</td>
<td>pre-NAM, post-NAM</td>
</tr>
<tr>
<td>Bhutiani N., et al. (2020)</td>
<td>India</td>
<td>Prospective clinical trial</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>Intraoral casts, extraoral casts</td>
<td>pre-NAM, post-NAM, 1-year after surgery</td>
</tr>
<tr>
<td>Maliha S.G., et al. (2021)</td>
<td>United States</td>
<td>Retrospective cohort</td>
<td>no PSIO</td>
<td>20</td>
<td>21</td>
<td>Photographs</td>
<td>at >14 years old age</td>
</tr>
<tr>
<td>Liang Z., et al. (2018)</td>
<td>China</td>
<td>Randomized controlled trial</td>
<td>no PSIO</td>
<td>42</td>
<td>42</td>
<td>Photographs</td>
<td>4-5 years after surgery</td>
</tr>
<tr>
<td>Barillas L., et al. (2009)</td>
<td>United States</td>
<td>Cross sectional cohort</td>
<td>no PSIO</td>
<td>15</td>
<td>10</td>
<td>Nasal casts</td>
<td>at 7-11 years old age</td>
</tr>
<tr>
<td>Ruiz-Escalon M.G., et al. (2016)</td>
<td>Spain</td>
<td>Prospective cohort</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>Nasal casts, photographs</td>
<td>Initial visit, before cheiloplasty</td>
</tr>
<tr>
<td>Mancini L., et al. (2019)</td>
<td>United States</td>
<td>Retrospective case control</td>
<td>non-cleft</td>
<td>15</td>
<td>10</td>
<td>3-D images</td>
<td>0-4 weeks of age, 1-2 weeks before surgery, 3-5 weeks after surgery</td>
</tr>
<tr>
<td>Nayak T., et al. (2020)</td>
<td>India</td>
<td>Retrospective cohort</td>
<td>-</td>
<td>24</td>
<td>-</td>
<td>Photographs</td>
<td>after cheiloplasty, 1-year follow-up, 3-year follow-up, 5-year follow-up</td>
</tr>
<tr>
<td>Clark S. L., et al. (2011)</td>
<td>United States</td>
<td>Cross sectional cohort</td>
<td>no PSIO</td>
<td>20</td>
<td>5</td>
<td>3-D images</td>
<td>at 2.6-10.0 years old age</td>
</tr>
<tr>
<td>Williams E.</td>
<td>United States</td>
<td>Retrospective cohort</td>
<td>no PSIO</td>
<td>28</td>
<td>14</td>
<td>Photographs</td>
<td>Initial visit, before cheiloplasty</td>
</tr>
</tbody>
</table>
DISCUSSION

Nasal deformity in patients with UCLP is characterized by displaced lower lateral nasal cartilage, an oblique and short columella, and a depressed dome. The final goal that surgeons want to achieve is an acceptable nasal form after the adolescent growth spurt. Performing radical nasal correction at an early age, such as primary cleft lip repair surgery, increases the difficulty of the following procedure. During the nasal maturation process, interference with normal nasal growth and development may occur. When it happens, touch-up surgery to maintain an acceptable nasal form becomes increasingly difficult due to scarring. It is necessary to maintain nasal form without multiple rhinoplasty, until touch-up surgery after the post adolescent growth spurt. Because of that, less invasive correction during primary cleft lip repair is important and presurgical nasal correction with NAM has become favored.3,7,11

Effectiveness of NAM therapy on nasal symmetry and proportions

Several studies have confirmed the efficacy of NAM on initial surgeries. The use of presurgical infant orthopaedic appliances (PSIO) such as NAM aims to improve facial symmetry before surgery in UCLP patients. A study conducted by Ezzat et al.12 indicated a remarkable improvement in nasal symmetry and proportions. To accomplish the improvement in the nasal symmetry of the affected nostril, it is necessary to maintain the width of the nasal base. In the Yilmaz et al.7 study, NAM therapy can improve nasal symmetry through increasing nasal height and decreasing nasal width of the affected side.

Vertical and horizontal measurements that have been used in several studies showed a clinically significant lower mean differences in the NAM group compared to the comparison group. These findings suggested that pre-surgical NAM application can improve nasal symmetry and overall aesthetic results.10,14,15

After NAM therapy, preoperative improvement in the columellar angle was achieved.14,16 Moreover, primary cheiloplasty can be done easier because NAM diminishes the tension over the soft tissues and reduces severity of deformity in the lower lateral nasal cartilages.8 Gomez et al.14 assessed preoperative improvement in nasal form by a straightening and elongation of columella length on the cleft side, in conjunction with the narrowing of the alveolar segments, lead to improved and favourable nasal symmetry before primary cheiloplasty and nasal repair.

The main problems that have remained after cheiloplasty in patients with UCLP were deficient columella, overhanging nasal apex, and depressed dome.17 Using NAM before primary cheiloplasty can help the cleft nasal deformity by transforming the depressed alar cartilages, short columella, deviated septum, and widened alar base. Nasal asymmetry in patients with UCLP significantly improved after NAM therapy and was further improved after primary cheiloplasty. Because of that, NAM was a beneficial adjuvant therapy in achieving nasal symmetry in the immediate postoperative period.9,16,18

The slight overcorrection of the alar dome on the cleft direction was suggested as a short-term positive effect of NAM.19 A retrospective case-control study that was conducted by Mancini et al.20 concluded that primary cheiloplasty after use of NAM in patients with UCLP can produce an average increase of 3.24 mm in nasal tip projection. This may represent a notable overcorrection of nasal tip projection, columella angle, and outer nasal widths when compared to the non-cleft control group. The overcorrection

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Country</th>
<th>Study Design</th>
<th>Comparis on Group</th>
<th>NA M (n)</th>
<th>Compar- arison (n)</th>
<th>Assessment Medium</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>M., et al. (2012)</td>
<td>states</td>
<td>cohort</td>
<td>no PSIO</td>
<td>6</td>
<td>6</td>
<td>Photographs</td>
<td>1-year post</td>
</tr>
<tr>
<td>Bangun K., et al. (2021)</td>
<td>Indonesia</td>
<td>Retrospective cohort</td>
<td>no PSIO</td>
<td>10</td>
<td>6</td>
<td>Photographs</td>
<td>initial visit, postsurgery</td>
</tr>
<tr>
<td>Funayama E., et al. (2018)</td>
<td>Japan</td>
<td>Retrospective cohort</td>
<td>no PSIO</td>
<td>10</td>
<td>6</td>
<td>Photographs</td>
<td>initial visit, postsurgery</td>
</tr>
</tbody>
</table>
may be of benefit due to the possibility of impaired growth in patients with UCLP. However, further longitudinal research is required to confirm this hypothesis.20

According to Wolff et al.21, NAM therapy was beneficial for patients with severe UCLP. The parameter was increased absolutely in comparison to the non-NAM group with severe UCLP (P = 0.094). This parameter reflects, indirectly, the nasal height and inner nostril height-to-width ratio and contributes to the desired nostril shape, which is often disturbed in cases of UCLP. The columella angle experienced the greatest changes in the patients with moderate and severe UCLP that were treated with NAM. These results suggest an advantage for better nasal symmetry.21

Nasalveolar molding works on the principle of plasticity and pliability of cartilage, which is present in the neonates during the initial months after birth. The maternal estrogen levels is higher immediately after birth and reduces within 6 weeks. Transient increments in estrogen levels will subsequently increase neonatal hyaluronic acid and act as a temporary barrier between the intercellular materials, giving the cartilage a temporary lack of elasticity. Because of that, patients with cleft lip and palate should start NAM therapy as early as possible.9,15,22,23

The NAM group in the Bhutiani study13 has a greater increase in columella height when the NAM treatment is started earlier. Williams et al.23 assessed 42 patients with complete UCLP that were divided into two groups. In one group, 28 patients were treated with NAM and in the other group, 14 patients received surgical treatment only. The study reported that there was no difference found of alar groove height symmetry between nasal molding and control subjects. This study outcome may be due to a delay beyond two weeks of life for initiation of nasal molding therapy.23

Another factor that can contribute to the NAM results is the use of labial taping. The labial taping has the benefit of significantly reducing the alar width of the cleft side resulting in a better nostril formation. Keck et al.15 reported that the nostril area and the alar width of the cleft side changed significantly and became nearly symmetrical to the non-cleft side. On the other hand, Gomez et al.14 reported that the alar base increased slightly. This suggests that labial taping might be required to counteract possible tissue stretching and normal width growth changes.

Long-term effect of NAM therapy on nasal symmetry and proportions

Until touch-up surgery after the post adolescent growth spurt, it is necessary to maintain a favourable nasal form without multiple rhinoplasty. Barillas et al.3 demonstrates that the lower lateral cartilage measurements are more symmetric and nasal septum deviation is significantly reduced in the NAM group patients. Furthermore, the NAM-group demonstrates that the improved nasal symmetry during the time of the primary surgery is maintained for at least 8.75 years.3 Similarly, another study by Ruiz-Escolano et al.8 suggests that NAM can reduce severity of deformity in the lower lateral cartilages and the primary cheiloplasty is made easier. Malitha et al.5 found that the use of NAM in patients with UCLP during infancy improves nasal symmetry and nasal proportions at the time of nasal maturity compared to patients who are managed without presurgical appliances.

A longitudinal study that was conducted by Nayak et al.18 found a gradual loss of the mean nasal height, mean gain in nasal width and alar base width, and an increase in the columella deviation from the after cheiloplasty follow-up to the 5-year follow-up as the patients aged. The unequal growth on the cleft and non-cleft sides might be the cause of the loss of symmetry.

Long-term assessment of NAM is necessary to determine its effects on nasal and facial growth as well as patients' self-perception of nasal aesthetics. The patients need to be followed-up till the end of growth and must be evaluated by careful observation at regular intervals for several years for a definite conclusion on the long-term effect of NAM.11,23,25

CONCLUSION

This review consolidates evidence from multiple studies on the effects of NAM on nasal symmetry and proportions in patients with UCLP. Our findings suggest that NAM is a useful adjuvant therapy and produces benefits in achieving nasal symmetry before and after the primary cheiloplasty when compared with no appliance-based presurgical treatment. However, there has not been sufficient evidence yet to conclude the long-term effects of NAM on nasal
and facial growth and it needs to be evaluated further.

Correspondence regarding this article should be addressed to:
Felicia Puspita Sari.
Faculty of Medicine, Universitas Udayana, Bali, Indonesia.
E-Mail: feliciapuspitasari@gmail.com

REFERENCES

7. Yilmaz RBN, Cakan DG. Nasolabial Morphology Following Nasoalveolar Molding in Infants With Unilateral Cleft Lip and Palate. The Journal of Craniofacial Surgery. 2018;0(0):1-5. DOI:10.1097/SCS.0000000000004427

